Knowille

JUL 3 0 2012

TN. DIV. OF AIR POLLUTION CONTROL

53-0187

2012 JUL 23 PM 2: 15

RECEIVED

July 20, 2012

Mr. John A. Trimmer, Chief
State of Tennessee
Department of Environment and Conservation
Division of Air Pollution Control
9th Floor, L&C Annex
401 Church Street
Nashville, TN 37243-1531

CERTIFIED MAIL Return Receipt Requested 7011 1570 0000 4274 0687

Re: Air Construction Permit Application - Wampler's Farm Sausage Company

Dear Mr. Trimmer:


Proton Power, Inc. is submitting the enclosed air construction permit application on behalf of Wampler's Farm Sausage Company. We have included the permit application fee of \$500 which is based on estimated maximum emission rates.

Should you have any questions, or need additional information, please do not hesitate to contact me at 865-312-3859.

Sincerely,

Sally Almond, P.F.

Chemical Engineer/EHS Manager

2012 JUL 23 PM 2: 15

Air Quality Construction Permit Application Wampler's Farm Sausage Company Lenior City, Tennessee July 2012

RECEIVED

1.0 Background

Wampler's Farm Sausage Company is located in the Eaton Cross Roads Community of Lenior City, Tennessee. This family owned business originally began in the 1930's as a slaughter house. To date it remains a family owned business providing high-quality sausage and other products throughout most of the United States.

2.0 Project Description

Wampler's plans to install three generator sets to produce electricity for use at their operation in Lenior City, Tennessee. The genset(s) will be powered by hydrogen rich fuel produced by the technology developed by Proton Power, Inc. (PPI). PPI's technology converts cellulose or carbonaceous material to hydrogen power (CHyP) via fast paralysis. Installation of this equipment will represent the first system of this kind using PPI technology. Energy produced by this process will allow Wampler's to operate their facility with a renewable, cleaner¹, carbonneutral, energy source.

The Wampler energy center will consist of the following unit operations:

- Biomass handling, processing, transfer system, and feed hoppers with associated dust and particulate control equipment
- 3 CHyP units to produce high hydrogen gas
- 3 Generator sets 228 kW each with associated pollution control equipment
- Process control equipment
- Biochar collection, packaging, and handling system with associated dust and particulate control equipment

A process flow diagram is included as Figure 1.

The biomass intended for fuel production is switchgrass which is available locally and other wood based material such as, but not limited to, sawdust, wood pieces, or wood pallets. The biomass will be received at the Wampler site, unloaded, pre-processed (if needed) in a tub grinder, placed into a temporary storage area, belt conveyed to a hammer mill for size reduction, air conveyed to a receiving hopper, then conveyed to the CHyP system feed hopper for conditioning with water prior to introduction into the CHyP unit. Cartridge type filter

baghouses will be used to control dust and particulate emissions from the temporary storage area, tub grinder, and air conveying operation.

Each CHyP unit will be designed to provide enough CHyP gas to produce 228kW of energy output. This will require approximately 24,150 pounds per day of biomass. Each genset will be equipped with emissions control equipment designed to meet applicable exhaust emission limits. The gensets selected for this project are manufactured by Caterpillar. The engines will be modified by PPI engineers at their manufacturing facility to operate on CHyP gas prior to delivery and installation at Wampler's.

Process control equipment includes automated analytical equipment to analyze the quality of CHyP gas produced and measure the exhaust gas emissions from the generator engine.

Biochar is a solid byproduct of the pyrolysis process. Much of the organically bound carbon is sequestered as inorganic carbon in this solid residue. Other inorganic compounds such as, but not limited to, nitrogen, sulfur, potassium, calcium also accumulate in the biochar. This nutrient rich material has a beneficial use as a soil conditioner/amendment. Wampler plans to collect the biochar for use as a soil amendment. The collection system will consist of an enclosed conveyor to a bagging system. Dust emissions will be controlled by a dust collector.

2.0 Description and Quantification of Air Emissions

2.2 Raw Material Handling Process

The carbonaceous feedstock used to generate the CHyP gas will be switchgrass or some type of wood product such as but not limited to sawdust, wooden pallets, etc... In order to produce 228 kW (maximum) from each genset approximately 24,150 pounds of feedstock per day will be required. Feedstock will arrive at the site either as loose material, baled, or solid wood pieces. Baled material and wood may be stored on-site or temporarily stored in truck trailers. Loose material will be unloaded into a covered temporary storage area. Some of the material received will be processed to a silage in a tub grinder then discharged into the temporary storage area. Dust and particulate matter will be generated from the tub grinding and discharge. A filter pack jet pulse type baghouse will be used to control emissions. This baghouse is sized for 3100 cfm with an air-to-cloth ratio of 8. Automated cleaning is controlled by a pre-set pressure drop. From the temporary storage area the material will be transported by a belt conveyor to a hammer mill for size reduction then air conveyed to the large feed hopper. A similar baghouse will be mounted atop the feed hopper to control emissions from the air conveying system. This baghouse is sized for 3100 cfm with an air-to-cloth ratio of 12. The dust collected will be added to the feedstock and used in the CHyP unit. Clean air from the baghouse will be discharged to the atmosphere. Feedstock will be transported in an enclosed screw conveyor to the CHyP units where it will be conditioned with water prior to entering the reactor vessel.

2.2.1 Raw Material Handling Emissions

The only pollutant generated from the material handling processes is particulate matter.

Since there are not any emission factors available for switchgrass, AP-42 emission factor for Alfalfa Dehydration (Chapter 9.9.4) is used for the tub grinding and discharge to the storage bin. The emission factor for Alfalfa Dehydration for a single-pass dryer cyclone is 4.1 lb PM/ton filterable, 0.65 lb PM/ton condensable (AP-42, Table 9.9.4-1). For the hammer mill and air conveying operation an emission factor for Particle Board Manufacturing emission factor of 3.4 lb PM/ton (AP-42, Table 10.6.2-1) is used.

- Tub grinder processing
 - The amount of material needed to operate all three CHyP systems for 24 hours is:
 - 1 kg feed produces approximately 1.5 kW-hr of energy (1 kg/1.5kW-hr) X 24 hrs/day x 228 kW X 3 = 24,127 lbs/day
 - Assume 50% of the feed goes through the tub grinder and is discharged to storage area
 - 24,127 lbs/day X 1 ton/2000 lbs x 0.50 X 4.75 lb PM/ton = 28.65 lb/day
- Hammer mill to feed hopper
 - o 24,127 lbs/day X 1 ton/2000 lbs x 0.50 X 3.4 lb PM/ton = 20.51 lb/day
- Total uncontrolled particulate emissions
 28.65 lb PM/day + 20.51 lb PM/day = 49.16 lb PM/day (2.05 lb PM/hr)

2.3 CHyP Unit

Feedstock used in the CHyP unit at the Wampler facility will be agricultural based or forestry based products. The gas produced by the CHyP unit will be frequently analyzed by an automated system. The analysis performed will quantify components of the CHyP gas (H₂, CO, CO₂, CH₄). The information will be accessible to operators and PPI engineer's. This information will be used for quality control purposes.

2.3.1 CHyP gas emissions

There may be occasion when CHyP gas is flared, although this will likely be limited to a startup, shutdown or malfunction. The CHyP unit is equipped with an emergency vent to release CHyP to the atmosphere should an emergency occur.

Emissions from flaring the CHyP gas consist of partially combusted and combusted components of the gas. Since the genset exhaust gas emissions are greater than emissions from flaring the CHyP gas, facility emissions estimates are based on continuous operation of the gensets.

2.4 Generator Sets

Each generator set consists of an engine and a generator that are mounted together as a single unit. The primary function of the set is to convert mechanical energy from the engine into electrical energy. Each genset will be permanently located at the Wampler energy center and capable of running on CHyP gas. An alternative source of fuel or backup fuel will not be utilized.

Electric power is available through the grid should it be necessary. The gensets will be equipped with Woodward gas control system to ensure proper air-to-fuel ratio, and optimum ignition. The system is designed for lean-burn gas engines where the energy quality of the fuel supply is variable. Emissions control equipment such as but not limited to, a catalytic converter/oxidizer will be installed in the exhaust gas stream to reduce emissions of NOx, CO and hydrocarbons. Exhaust gas emission measurements will be collected by an automated system for the purpose of providing real-time data to PPI. This data will verify the performance of the control device and demonstrate compliance with emission limits.

2.4.1 Exhaust Gas Emissions

Based on analytical testing performed on the CHyP gas no halides, hydrogen sulfide, sulfur dioxide, or ammonia compounds have been detected. Uncontrolled emissions from the combustion of CHyP gas in the genset are limited to unburned fuel (H₂, CO, CH₄), NO_x, CO₂, water, and VOC's (hydrocarbons). Each genset will be equipped with an emissions control device designed to meet emissions limits set forth in New Source Performance Standards established in under 40 CFR Part JJJJ Table 1 (attachment 1) for non-emergency natural gas.

Currently there are no emissions factors for synthetic or pyrolysis gas. For emissions estimating purposes AP-42 Chapter 3.2 Natural Gas-fired Reciprocating Engines, Table 3.2-1 emission factors are used to estimate CO, VOCs, PM, NO_x, and CH₄. Since CHyP gas contains only about 10% methane, the emission factor in AP-42 for methane (1.45 lb/mmBtu) is reduced by 50% (0.725 lb/mmBtu). The emission factor for sulfur dioxide is considered negligible based on testing the CHyP gas. Table 2 below summarizes combustion emissions.

Table 1 - Exhaust CHyP Gas Emissions Estimates

	Emission Factor		led Emissions	s - 24 hour day, 365 day Total 3 - 228 kW		
Pollutant	(lb/mmBtu)	Lbs/hr	Tons/yr	Lbs/hr	Tons/yr	
NO,	3.17	2.5	10.95	7.5	32.85	
co	0.386	0.30	1,31	0.90	3.94	
voc	0,120	0.09	0.39	0.27	1.18	
CH₄	0.725	0.565	2.47	1.69	7.42	
PM ₁₀	0.0384	0.03	0.13	0.09	0.39	
PM _{2.5}	0.0384	0.03	0.13	0.09	0.39	

2.4.1.1 CO₂ Emissions

Clean cellulosic biomass is considered a traditional fuel by EPA definition along with other such traditional fuels: coal, natural gas, refinery gas, oil petroleum coke. Plant based bioorganic feedstocks are at least carbon neutral since the feedstock has taken CO2 out of the atmosphere and returned a portion of it in the CHyP gas production. The majority of the carbon is sequestered in the biochar.

2.5 Biochar

Biochar is the carbon rich product produced when organic based material thermally decomposes. Land applying biochar has proven beneficial as a means of improving soil

productivity, carbon storage (sequestration), and or filtration of percolating soil water. Analytical testing has been performed on biochar produced from various feedstocks. The higher the pyrolysis temperature the higher the carbon content. Based on the operating temperature for Wampler's CHyP units, the carbon content will typically be near 90% by weight.

Wampler's plans to collect biochar from the CHyP units and use it as a soil amendment. When biochar is land applied it is carbon negative because a substantial portion of the carbon is held in the soil. This results in a net reduction of CO_2 in the atmosphere.

Biochar is a black, light-weight, fine material. From the CHyP unit the biochar will be conveyed by a screw auger to a bagging system. Dust or particulate matter generated from the bagging system will be controlled by 2500 cfm cartridge type jet pulse dust collector.

2.5.1 Biochar Particulate Emissions

The amount of biochar produced during pyrolysis ranges from 2% to 8% by weight of feedstock. For air emissions estimating 8% is used. For air emission estimating AP-42 Chapter 10.7 for charcoal briquetting is used. Briquetting involves handling raw charcoal material, crushing and mixing. Uncontrolled emissions are estimated below:

Biomass Feed rate = 24,127 lbs/day (12.06 tons/day)
12.06 tons feed/day X 0.08 biochar produced/feed X 56 lbs PM/ton = 54.03 lb PM/day

2.6 Summary of Air Emissions (Potential to Emit)

The table below summaries air emissions from the Wampler energy center. Emissions are based on operating all three gensets 24 hours per day, 365 days per year.

Table 2 - Total Estimated Air Emissions (uncontrolled)

	Material		3 - 228	kW	Total PTE - No Control		
Pollutant	Handling		Genset	:S			
	Łbs/hr	Tons/yr	Lbs/hr	Tons/yr	Lbs/hr	Tons/yr	
NO _x			7.5	32.85	7.5	32.85	
CO			0.96	4.20	0.96	4.20	
VOC			0.27	1.18	0.27	1.18	
CH₄			1.69	7.40	1.69	7.40	
PM ₁₀	1.87	8.19	0.09	0.39	1.96	8.58	
PM _{2.5}	1.87	8.19	0.09	0.39	1.96	8.58	
PM (biochar)	2.25	9.86			2.25	9.86	
PM (mat)	2.05	8,98				8.98	
				Total	18.64	81.63	

3.0 Regulatory Review

3.1 Title V

The Wampler's facility currently does not have any permitted air sources. The facility does not have the potential to emit pollutants in a quantity that would classify it as a major source, therefore facility is considered an area source.

3.2 Mandatory Greenhouse Gas Reporting 40 CFR Part 98

GHG reporting requirements apply to facilities that contain source categories listed in 40 CFR Part 98, or have maximum rated heat input capacity of 30 mmBtu/hr or greater and emits 25,000 metric tons of CO_2e .

Emission factors given for calculating CO_2 emissions are for traditional fuels or processes that are not similar to PPI's technology. PPI will use data from actual operations and testing to develop an emission factor for CO_2 . Calculation of CO_2 will be based on the emission factor, actual CHyP fuel usage, and will consider the amount of CO_2 that has been taken out of the atmosphere by the plant.

3.3 Federal New Source Performance Standards - 40 CFR Part 60 Subpart JJJJ

This rule applies to stationary spark ignited internal combustion engines (SI ICE). These regulations address stationary engines that are fueled with gasoline, natural gas, propane, and biogas. Presently there are no regulations that address emissions generated from pyrolysis gas. EPA plans to impose emissions limits set for methane fueled engines on those engines fueled by CHyP gas. The purpose of the NSPS regulations is to limit NOx, CO and VOC emitted from new stationary SI ICE.

The gensets to be installed at the Wampler's facility meet the definition of a stationary spark ignited internal combustion engine. Emissions testing will be conducted on the engines to verify compliance with NSPS limits.

3.4 Federal National Emission Standards for Hazardous Air Pollutants - 40 CFR Part 63 Subpart ZZZZ

This rule applies to owners or operators of stationary reciprocating internal combustion engines (RICE) at a major or area source of HAP emissions. This rule requires that new RICE located at area sources subject to 40 CFR Part 60 Subpart JJJJ must meet NSPS requirements.

3.5 Federal Engine Test Procedures - 40 CFR Part 1065

Stationary engines are subject to engine testing. Testing is conducted to measure emissions and may be performed in a laboratory environment or in the field. PPI will utilize a certified lab to conduct this testing in accordance with the procedures in the rule. This testing will be performed prior to installing the gensets at the Wampler's facility.

3.6 Tennessee Air Quality Regulations

Tennessee air quality regulations were reviewed to determine applicability to the Wampler's energy facility. The Wampler's site is located in Loudon County which has been designed as non-attainment for PM_{2.5}. The facility is not considered a major stationary sources under Title V regulations or under NSR rules. PM_{2.5} precursors include NOx, SO₂, ammonia and VOC's. Based on analytical testing conducted on CHyP gas SO₂ and ammonia are considered negligible; hydrocarbon's (VOC's) and methane account for less than 10% of the gas composition. Nitrogen oxides will be controlled to the limits set forth in NSPS regulations for SI ICE. Engine testing will include testing for particulate matter.

Tennessee Construction and Operating Permits rule addresses growth in nonattainment areas. Specifically it addresses pollution control measures that would prevent further deterioration of air quality in the area. The section is applicable to major stationary sources and major modifications located in nonattainment areas. The activities proposed at the Wampler facility do not qualify as a major source or a major modification, therefore this section does not apply.

Wampler's plans to install pollution control equipment for exhaust gas and particulate matter emissions and does not anticipate further deterioration of air quality as a result of their project.

3.6.1 Visible Emission Regulation (1200-03-05)

The general standard for opacity will apply to the Wampler facility. This standard prohibits a discharge of a visible emission from any air contaminant source with an opacity in excess of twenty (20) percent for an aggregate of more than five (5) minutes in any one (1) hour or more than twenty (20) minutes in any twenty-four (24) hour period.

3.6.2 Non-Process Emission Standards (1200-03-06)

The allowable particulate emissions, E, from fuel burning equipment is:

E=0.600 lb/mmBtu for Q < or = to 10 mmBtu/hr (3000 kW), where Q is the total installation heat input

Allowable emission for the 3 - 228 kW genset (2.33 mmBtu/hr):

 $E=0.6 lb/mmBtu \times 2.33 mmBtu/hr = 1.4 lb/hr$

Estimated particulate emissions (uncontrolled) from the gensets is 0.2 lb/hr.

3.6.3 Non-process Gaseous Emissions (1200-03-06-.03)

For gaseous air contaminants source must utilize the best equipment and technology currently available for control. Each genset will be equipped with a catalytic device to control exhaust gas emissions.

3.6.4 Process Emissions Standards (1200-03-07)

For new processes particulate emission limits are found in 1200-03-07-.03 Table 2. PM limits are based on the following equation where P is the process weight rate:

The allowable emissions rate from Table 2 for the biomass feed system, based on operating the 3 - 228 kW genset (1 kg biomass produces 1.5 kW-hr), with a feed rate of 1005.3 lb/hr is:

$$E = 3.59 * (0.503 T/hr)^{0.62} = 2.34 lb/hr$$

Estimated particulate emissions from handling and processing feed material is: 2.05 lb/hr

3.6.5 Fugitive Dust (1200-03-08-.01)

Wampler's does not anticipate fugitive dust from their operations. Control of dust from the operation is important for safety reasons because the dust is combustible and the CHyP gas is flammable. All biomass handling systems will be equipped with a dust collection system. The parking lot and unloading area is paved.

3.6.6 Hazardous Air Contaminants (1200-03-11)

Tennessee has designated seven hazardous air contaminants: asbestos, beryllium, mercury, vinyl chloride, benzene, radionuclide's, and inorganic arsenic. Wampler's does not conduct any applicable activities that involve these compounds.

3.6.7 Control of Sulfur Dioxide Emissions 1200-03-14

Wampler's is located in Loudon County. Loudon County is designated as a Class VI country.

For fuel burning equipment 250 mmBtu per hour or less that is located in a Class VI are, sulfur dioxide emissions are limited to 5.0 lb/mmBtu.

For 3 - 228 kW gensets this equates to: 5.0 lb/mmBtu x 2.3 mmBtu/hr = 11.5 lb SO2/hr

Based on the composition of typical feedstocks and testing conducted, we do not anticipate any sulfur dioxide emissions. This will be verified during engine testing/compliance testing.

Process emissions standards are limited to SO_2 emissions less than 2000 ppm, by volume, dry basis (one hour average), in a Class VI county. PPI does not anticipated any sulfur dioxide process emissions.

3.6.8 Volatile Organic Compounds 1200-03-18

Wampler's does not have any equipment or operations subject to the requirements of this section.

Attachment 1
Table 1 - to Subpart JJJJ of Part 60

				Em	ission	standards ^a				
Engine type	Maximum	Manufacture	g/HP-hr		-hr	ppmvd at 15% O ₂				
and fuel	engine power	date		CO	VOC^d	NO _X	CO	VOC^d		
Non-Emergency SI Natural Gas ^b and Non-Emergency SI Lean Burn LPG ^b	100≤HP<500	7/1/2008	2.0	4.0	1.0	160	540	86		
		1/1/2011	1.0	2.0	0.7	82	270	60		
Non-Emergency SI Lean Burn Natural Gas and LPG	500≤HP<1,350	1/1/2008	2.0	4.0	1.0	160	540	86		
		7/1/2010	1.0	2.0	0.7	82	270	60		
Non-Emergency SI Natural Gas and Non-Emergency SI Lean Burn LPG (except lean burn 500≤HP<1,350)	HP≥500	7/1/2007	2.0	4.0	1.0	160	540	86		
	HP≥500	7/1/2010	1.0	2.0	0.7	82	270	60		
Landfill/Digester Gas (except lean burn 500≤HP<1,350)	HP<500	7/1/2008	3.0	5.0	1.0	220	610	80		
		1/1/2011	2.0	5.0	1.0	150	610	80		
	HP≥500	7/1/2007	3.0	5.0	1.0	220	610	80		
		7/1/2010	2.0	5.0	1.0	150	610	80		
Landfill/Digester Gas Lean Burn	500≤HP<1,350	1/1/2008	3.0	5.0	1.0	220	610	80		
		7/1/2010	2.0	5,0	1.0	150	610	80		
Emergency	25 <hp<130< td=""><td>1/1/2009</td><td>c10</td><td>387</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></hp<130<>	1/1/2009	c10	387	N/A	N/A	N/A	N/A		
	HP≥130		2.0	4.0	1.0	160	540	86		

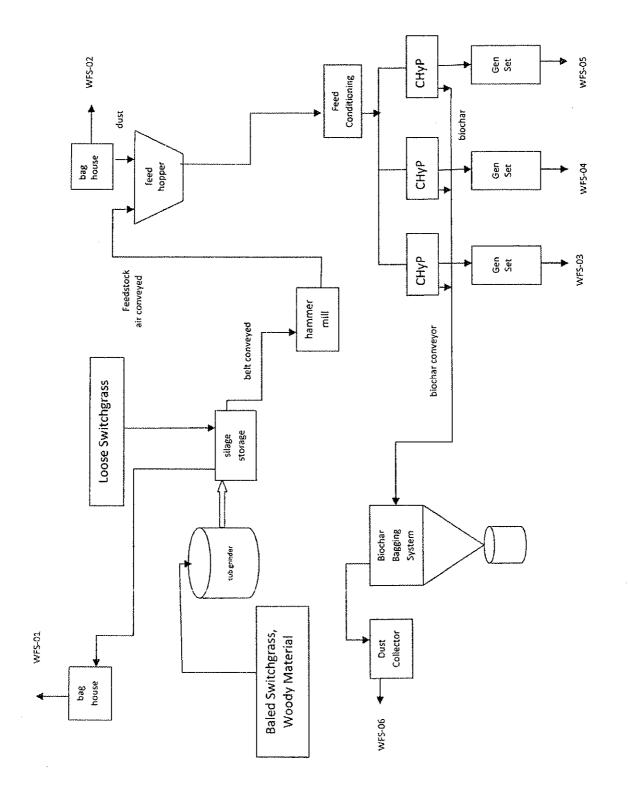


Figure 1 - Wampler's Energy Center - Process Flow Diagram

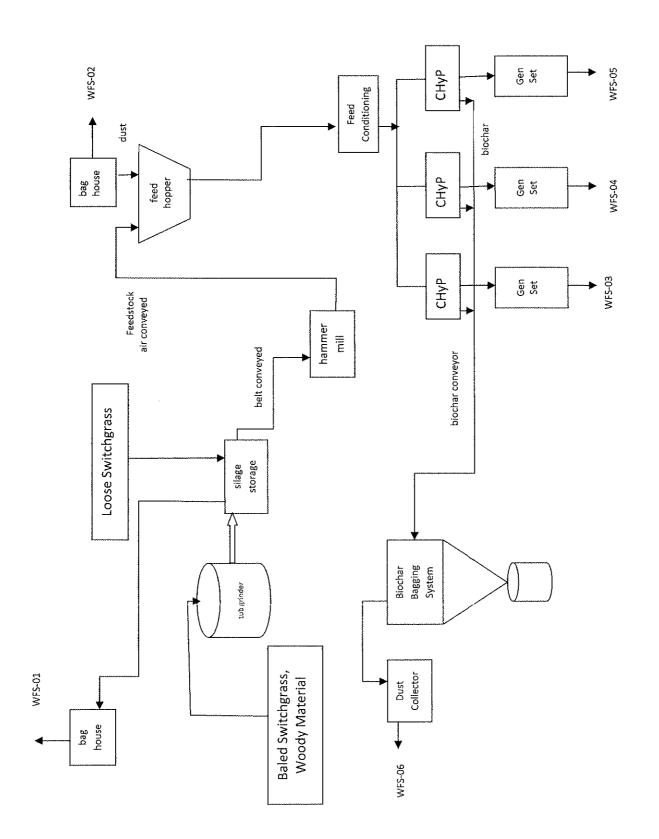


Figure 1 - Wampler's Energy Center - Process Flow Diagram

	·	

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

TN. DIV. OF Nashville, TN 37243-1531

AIR POLLUTION CONTRESPONDE: (615) 532-0554

FAX: (615) 532-0614

9th Floor, L & C Annex 401 Church Street

2012 JUL 23 PM 2: 16

PERMIT APPLICATION

=						
	SUBMIT IN DUPLICAT	TE FOR EACH EMISS	SION SOU	RCE. ATTACH APPROPRIATE SOURCE		
DESCRIPTION FORMS. 1. ORGANIZATION'S LEGAL Wampler's Farm Sausage Comp		, , , , , , , , , , , , , , , , , , , 	FOR	APC COMPANY, POINTING.)		
2. MAILING ADDRESS (ST/RD 781 Highway 70 West	P.O. BOX)		APC	53-0187-01 APC LOG/PERMIT NO. 9(6)398		
CITY Lenior City	STATE Tennessee	ZIP CODE 37771	1.3	PHONE WITH AREA CODE 865-986-2056		
3. PRINCIPAL TECHNICAL C Martin Flanary, Plant Manager	CONTACT			PHONE WITH AREA CODE 865-986-2056		
4. SITE ADDRESS (ST/RD/HW) 781 Highway 70 West	Y)			COUNTY NAME Loudon		
CITY OR DISTANCE TO NEA Approximately 7 miles to Lenior City		ZIP CODE 37771		PHONE WITH AREA CODE 865-986-2056		
5. EMISSION SOURCE NO. (N IDENTIFIES THIS SOURCE) WFS-01, WFS-02, WFS-03, WF		PERMIT RENE YES ()	WAL NO (x)		
6. BRIEF DESCRIPTION OF E						
control equipment will include cataly handling equipment. 7. TYPE OF PERMIT REQUES CONSTRUCTION STARTING	st control for the generator er	ngine exhaust and fabric	filter baghou	containerized and used as a soil amaendment. Air pollution se(s) to control dust and particulate emissions from material EMISSION SOURCE REFERENCE NUMBER		
Oct 29, 20		N/A		WFS-01, WFS-02, WFS-03, WFS-04, WFS-05		
OPERATING DATE CO	NSTRU- DATE COMPL		T NUMBER			
LOCATION TRANSFE TRANSFER	ER DATE	LAST PERMI	T NUMBER	EMISSION SOURCE REFERENCE NUMBER		
ADDRESS OF LAST LOCATI	ON					
8. DESCRIBE CHANGES THA OPERATING PERMIT APP		THIS EQUIPMENT (OR OPERA	TION SINCE THE LAST CONSTRUCTION OR		
OPERATING PERMIT APP		0		DATE		
OPERATING PERMIT APP	N MUST BE SIGNED BEFO	0				

TABLE OF POLLUTION REDUCTION DEVICE OR METHOD CODES (ALPHABETICAL LISTING)

NOTE: FOR CYCLONES, SETTLING CHAMBERS, WET SCRUBBERS, AND ELECTROSTATIC PRECIPITATORS. THE EFFICIENCY RANGES CORRESPOND TO THE FOLLOWING PERCENTAGES:

HIGH: 95-99+%, MEDRIM: 80-95%, AND LOW: LESS THAN 80%,

IF THE SYSTEM HAS SEVERAL PIECES OF CONNECTED CONTROL EQUIPMENT, INDICATE THE SEQUENCE, FOR EXAMPLE: 008:010 97%

IF NONE OF THE BELOW CODES FIT, USE 999 AS A CODE FOR OTHER AND SPECIFY IN THE COMMENTS.

NO EQUIPMENT	000
ACTIVATED CARBON ADSORPTION	048
AFTERBURNERDIRECT FLAME	021
AFTERBURNERDIRECT FLAME WITH HEAT EXCHANGER	
AFTERBURNERCATALYTIC	019
AFTERBURNERCATALYTIC WITH HEAT EXCHANGER	020
ALKALIZED ALUMINA	040
CATALYTIC OXIDATIONFLUE GAS DESULFURIZATION	
CYCLONEHIGH EFFICIENCY	007
CYCLONEMEDIUM EFFICIENCY	008
CYCLONELOW EFFICIENCY	009
DUST SUPPRESSION BY CHEMICAL STABILIZERS	
OR WETTING AGENTS	062
ELECTROSTATIC PRECIPITATORHIGH EFFICIENCY	010
ELECTROSTATIC PRECIPITATORMEDIUM EFFICIENCY	011
ELECTROSTATIC PRECIPITATOR-LOW EFFICIENCY	012
FABRIC FUTERHIGH TEMPERATURE	016
FABRIC FILTERMEDIUM TEMPERATURE	017
FABRIC FILTERLOW TEMPERATURE	018
FABRIC FILTERMETAL SCREENS (COTTON GINS)	059
FLARING	023
GAS ADSORPTION COLUMNPACKED	050
GAS ADSORPTION COLUMN TRAY TYPE	
GAS SCRUBBER (GENERAL: NOT CLASSIFIED)	013

LIMESTONE INJECTIONDRY	041
LIMESTONE INJECTIONWET	
LIOUID FILTRATION SYSTEM	049
MIST ELIMINATORHIGH VELOCITY	
MIST ELIMINATORLOW VELOCITY	
PROCESS CHANGE	
PROCESS ENCLOSED	
PROCESS GAS RECOVERY	
SETTLING CHAMBERHIGH EFFICIENCY	
SETTLING CHAMBERMEDIUM EFFICIENCY	
SETTLING CHAMBERLOW EFFICIENCY	
SPRAY TOWER (GASEOUS CONTROL ONLY)	
SULFURIC ACID PLANTCONTACT PROCESS	
SULFURIC ACID PLANTDOUBLE CONTACT PROCESS	
SULFUR PLANT	045
VAPOR RECOVERY SYSTEM (INCLUDING CONDENSERS,	45.44
HOODING AND OTHER ENCLOSURES)	047
VENTURI SCRUBBER (GASEOUS CONTROL ONLY)	053
WET SCRUBBERHIGH EFFICIENCY	
WET SCRUBBERMEDIUM EFFICIENCY	
WET SCRUBBERLOW EFFICIENCY	003
WET SUPPRESSION BY WATER SPRAYS	. 061

TABLE OF EMISSION ESTIMATION METHOD CODES

NOT APPLICABLE EMISSIONS ARE KNOWN TO BE ZERO	0
EMISSIONS BASED ON SOURCE TESTING	l
EMISSIONS BASED ON MATERIAL BALANCE USING ENGINEERING EXPERTISE AND KNOWLEDGE OF PROCESS	2
EMISSIONS CALCULATED USING EMISSION FACTORS FROM EPA PUBLICATION NO. AP-42 COMPILATION OF	
AIR POLLUTANT EMISSIONS FACTORS	
JUDGEMENT	4
EMISSIONS CALCULATED USING A SPECIAL EMISSION FACTOR DIFFERING FROM THAT IN AP-42	
OTHER (SPECIFY IN COMMENTS)	6

STATE OF TENNESSEE
DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

TN. DIV. OF AIR POLLUTION CONTROL

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone:(615) 532-0554 FAX: (615) 532-0614

2012 JUL 23 PM 2: 16

PROCESS OR FUEL BURNING SOURCE DESCRIPTION

APC21(& 24)

PLEASE TYPE OR PRIN	r, SUBMIT IN DUF	PLICATE AND	ATTACH TO THE	E PERMIT A	PPLICA	TION.	1
ORGANIZATION NAM Wampler's Farm Sausage C					FOR	APC COMP	NY-POINT NO.
2. EMISSION SOURCE N WFS-03, WFS-04, WFS-		T APPLICATIO	N)	SIC CODE 2013	/ / / APC	APC PERMI	I/LOG NO,
3. DESCRIPTION OF PRO	DCESS OR FUEL BU	URNING UNIT					
3 - 228 kW each Generator Se	t						
4. NORMAL OPERATIO	N: HOURS/	DAY DAYS/	WEEK	WEEKS/YE	AR	DAYS/YEAI	}
→	25	7		52		365	
5. PERCENT ANNUAL THROUGHPUT:	DECFE	B. MARC	H-MAY	JUNE-AUG		SEPTNOV.	
THROUGHPUT:	25%	25%		25%		25%	
6. TYPE OF PERMIT AP			T T C C C C C C C C C C C C C C C C C C	(GINEON A	ar.	(CHECK BI	ELOW ONE ONLY)
PROCESS SOURCE; A	PPLY FOR A SEPARA , AND COMPLETE L			(CHECK A	1		()
PROCESS SOURCE V MATER		FUEL:PRODUC PLY FOR A SEPA	TS OF COMBUSTIC ARATE PERMIT FO	R EACH SOU			()
NON-PROCESS FUEL MATEI BURNI		CE: PRODUCTS MPLETE THIS F AN EMISSION I	OF COMBUSTION ORM FOR EACH B POINT DESCRIPTION	DO NOT CO OILER OR FU ON FORM (AI	JEL PC 22)		(x)
7. TYPE OF OPERATIO	N: CONTINUOUS,		ATCH	NORMAL I		NORMAL E	ATCHES/DAY
8. PROCESS MATERIAL	(x) INPUTS AND	DIAGRAM*	INPUT RATES	TES (POUNDS/HOU	OUR)	1	(FOR APC USE ONLY)
IN-PROCESS SOLID F	UELS	REFERENCE	DESIGN	ACTU	AL	1	SCC CODE
Α.						1	
В.						1 1	
C.						//	
D,						1	
E,	Ε.					/ /	
F.						1	
G.						<i>J</i>	
W		TOTALS				//	

^{*} A SIMPLE PROCESS FLOW DIAGRAM MUST BE ATTACHED.

9.	BOILER O	R BURNER DA	ATA: (COMPLETE L	INES 9 TO 14	USING A SEPA	RATE FOR	RM FOR EAC	CH BOILER)	
	BOILER NUMBER STACK NUMBER**		TYPE OF FIRING**	RATED BO HORSEPO	WER C	RATED INPU CAPACITY 10 ⁶ BTU/HR)	(SPECIFY CAL	ER RATING PACITY AND UNITS)	
	BOILER SE	ERIAL NO.	AL NO. DATE CONSTRUCTED DATE OF LAST MODIFICATION (EXPLAIN IN COMMEN						MENTS BELOW).
	*** CYCLO REINJE IN CON	ONE, SPREADE CCTION), OTHE MMENTS).	I MMON STACK WILL R (WITH OR WITHOU ER STOKER (SPECIF	UT REINJECT Y TYPE), HA	TON), PULVER ND FIRED, AUT	IZED (WI FOMATIC,	OR OTHER	TYPE (DESCRIBE	BELOW
10.			TE FOR A PROCESS S	OURCE WITH	H IN-PROCESS				NG SOURCE)
	PRIMARY CHyP (FUEL TYPE (S.	PECIFY)			STANDI	BY FUEL TY	PE(S)(SPECIFY)	
	FUELS USI	THE RESERVE OF THE PARTY OF THE	ANNUAL USAGE	HOURI	Y USAGE AVERAGE	% SULFU	R ASH	BTU VALUE OF FUEL	(FOR APC ONLY) SCC CODE
***************************************	NATURAL	GAS;	10 ⁶ CUFT	CUFT	CUFT	111	S • S. 900 S.	1,000	
	#2 FUEL O	L:	10 ³ GAL	GAL	GAL		111		
	#5 FUEL OI	L:	10 ³ GAL	GAL	GAL		11		
	#6 FUEL OI	L:	10 ³ GAL	GAL	GAL		1 /		
	COAL:		TONS	LBS	LBS		1//		
	WOOD:		TONS	LBS	LBS	111			
	LIQUID PR	OPANE:	10 ³ GAL	GAL	GAL	111	/ / /	85,000	
996	OTHER (.SI	PECIFY IITS.): CHyP	10 ⁶ CUFT 52.5	6000 cuft			1//	390	
gas 11.	IF WOOD	IS USED AS A	FUEL, SPECIFY TY	PES AND ES	TIMATE PERC	ENT BY	WEIGHT O	F BARK	
12.	IF WOOD	S USED WITH	OTHER FUELS, SP	ECIFY PERC	ENT BY WEIG	GHT OF V	OOD CHAI	RGED TO THE BU	RNER.
13.	COMMEN	ΓS							
101	COMMENT								
					0				
14.	SIGNATUR	E /	1 1		//		***************************************		DATE
1	TA	XY	1 Null	1. /	1				2012-07-19

NOT TO BE USED FOR TITLE V APPLICATIONS

TN. DIV. OF 401 Church Street

AIR POLLUTION CONTRACTOR (615) 532-0554
FAX: (615) 532-0614

ZUIZ JUL 23 PN 2: 15

EMISSION POINT DESCRIPTION

PLEASE TYPE OR PRINT ATTACH TO THE PERMI			CATE FOR EACH STA	ACK OR EMISSION	POINT CEN	/CO						
1. ORGANIZATION NAME		NY POINT NO.										
ii oloamanion mani	4				1//	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Wampler's Farm Sausage												
2. EMISSION SOURCE NO	APC SEQUEN	ICE NO.										
WFS-01												
3. LOCATION:	LATITUDE		LONGITUDE	UTM VERTICAL	APC	UTM HORIZO	NTAL					
	35.835383		-84.321674	199951.19		3970785.65	2 2 12 12 72 12					
4. BRIEF EMISSION POIN	T DESCRIPT	ION (ATTACH.	A SKETCH IF APPROPI	RIATE):		DISTANCE TO PROPERTY I.						
Feedstock received as baled swi	itcherass, or wo	od nieces will be	processed for size reduc	tion in a tub grinder. T	he tub grinder	TROTERT I						
will discharge the material to th												
COMPLETE LINES 5 AND 6 IF DIFFERENT FROM THAT ON THE PROCESS OR FUEL BURNING SOURCE DESCRIPTION (APC 21)												
					RCEDESCRIPTIO							
5. NORMAL OPERATION:	HOURS/DAY	Y	DAYS/WEEK	WEEK/YEAR		DAYS/YEAR						
OF ERATION;	25		7	52		365						
												
6. PERCENT ANNUAL	DECFEB.	•	MARCH-MAY	JUNE-AUG.		SEPTNOV.						
THROUGHPUT:	25			2.5		25						
7. STACK OR EMISSION	25 HEIGHT AB	O3/02	DIAMETER	25 TEMPERATURE	% OF TIME	25 DIRECTION OF EXIT						
POINT DATA;	GRADE (F)		(FT)	(°F)	OVER 125°F	(UP, DOWN OR						
		,	(**)	()		HORIZONTAL)						
<u>→</u>	12		0.5	ambient	0	horizontal						
DATA AT EXIT	FLOW (ACT	UAI.	VELOCITY	MOISTURE		MOISTURE						
CONDITIONS:	FT ³ /MIN.) 3100		(FT/SEC) 260	(GRAINS/FT³)		(PERCENT) Approx 15%						
>	3100		200			Applox 1570						
DATA AT STANDARD	FLOW (DRY	STD.	VELOCITY	MOISTURE	***************************************	MOISTURE	MOISTURE					
CONDITIONS:	FT ³ /MIN)		(FT/SEC)	(GRAINS/FT ³)		(PERCENT)						
	2635		224									
8. AIR CONTAMINANTS		A.C.	TUAL EMISSIONS		<u> </u>	 	T					
o. Aux CONTAMINANTS	EMISSIONS		CONCENTRATION	AVG. EMISSIONS	EMISSIONS*	CONTROL	CONTROL					
	AVERAGE	MAXIMUM		(TONS/YR)	EST.	DEVICES*	EFFICIENCY%					
PARTICULATES			**									
	1.20	1.20		5.22	5	017	95%					
SULFUR			***									
DIOXIDE CARBON	<u> </u>		PPM		-	 						
MONOXIDE			1114									
ORGANIC			PPM									
COMPOUNDS						<u> </u>						
NITROGEN OXIDES			Mqq									
FLUORIDES			l			1						
a respect to take filled												
OTHER(SPECIFY)												
OTHER(SPECIFY)	 		 			 						
					<u> </u>							

9,	CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:	
	OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) ()
	CONTRACTOR OF THE CONTRACTOR O	

Final selection of a baghouse may result in some minor changes.

11			DATE
6	NOT L	MULL	2012-07-19
1			

- * REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.

 ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS —
 GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.

 *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT
- INPUT.

NOT TO BE USED FOR TITLE V APPLICATIONS

TN. DIV. OF AIR POLLUTION CONTROL

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

2012 JUL 23 PM 2: 15 EMISSION POINT DESCRIPTION

1. ORGANIZATION NAME	•			HEC.E	IVED//	APC COMPAI	Y POINT NO.
Wampler's Farm Sausage	Company				FOR		
2. EMISSION SOURCE NO. (FROM APPLICATION) WFS-02			FLOW DIAGRAM POINT NUMBER / / / / WFS-02 APC			APC SEQUENCE NO.	
3. LOCATION: LATITUDE			LONGITUDE	UTM VERTICAL		UTM HORIZO	NTAL
→ 35.835383			-84.321674	199951.19		3970785.65	
4. BRIEF EMISSION POIN	r descript	ION (ATTACH	A SKETCH IF APPROP	RIATE):		DISTANCE TO PROPERTY L	
Feedstock received as baled swi will discharge the material to the	e temporary sto	orage area. Dust	emissions from this proce	ess will be controlled w	ith a bag house.	1000	(1)
COMPLETE LINES 5 AND 6 I	F DIFFEREN	FROM THAT	ON THE PROCESS OR I	FUEL BURNING SOU	RCE DESCRIPTIO	N (APC 21)	
5. NORMAL OPERATION:	HOURS/DA	Υ	DAYS/WEEK	WEEK/YEAR		DAYS/YEAR	
OPERATION: →	25		7	52		365	
6. PERCENT ANNUAL THROUGHPUT:	DECFEB.		MARCH-MAY	JUNE-AUG.		SEPTNOV.	
mkoudm'u1; →	25		25 25			25	
7. STACK OR EMISSION	HEIGHT AE		DIAMETER	TEMPERATURE	% OF TIME OVER 125°F		
POINT DATA:	GRADE (F	1)	(FT)	(°F)	OVER 125°F	HORIZONTA	
	18		0.5	ambient	0	horizontal	
DATA AT EXIT CONDITIONS:	FLOW (ACT FT ³ /MIN.) 3100	'UAL	VELOCITY (FT/SEC) 260	MOISTURE (GRAINS/FT³)		MOISTURE (PERCENT) Approx 15%	
DATA AT STANDARD CONDITIONS:	FLOW (DRY FT³/MIN) 2635	/ STD.	VELOCITY (PT/SEC) 224	MOISTURE (GRAINS/FT ³)		MOISTURE (PERCENT)	
8. AIR CONTAMINANTS			TUAL EMISSIONS				
	EMISSIONS AVERAGE	(LBS/HR) MAXIMUM	CONCENTRATION	AVG. EMISSIONS (TONS/YR)	EMISSIONS* EST.	CONTROL DEVICES*	CONTROL EFFICIENCY®
PARTICULATES	0.85	0.85	非 木	3.74	5	017	95%
SULFUR DIOXIDE			***				
CARBON MONOXIDE			PPM				
ORGANIC COMPOUNDS			PPM				
NITROGEN OXIDES			PPM				
FLUORIDES	<u> </u>						
OTHER(SPECIFY)				***************************************	<u> </u>	<u></u>	
OTHER(SPECIFY)		 			 	+	

9,	CHECK TYPES OF MONITORING AND R	CORDING INSTRUMENTS THAT ARE ATTACHED:	
	OPACITY MONITOR (), SO2 MONITOR (). NOX MONITOR (), OTHER (SPECIFY IN COMMENTS	

Final selection of a baghouse may result in some minor changes,

	()		
II. SIGN.	ATUKE //	. 1 . / /	DATE
The second second	MYX	Nwll of	2012-07-19
al .	7		

- * REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.

 ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS —
 GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.

 *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT
- INPUT.

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

9th Floor, L & C Annex
IN. DIV. 401 Church Street
AIR POLLUTION 1600 1615) 532-0554
FAX: (615) 532-0614

2012 JUL 23 PM 2: 15

EMISSION POINT DESCRIPTION

ATTACH TO THE PERMIT 1. ORGANIZATION NAME					9.477	-APCICOMPAI	VY POINT NO.
					FOR		
Wampler's Farm Sausage		V2.10721	Laramana	NED VILLE COLOD	FOR / / /	APC SEQUEN	CE NO
2. EMISSION SOURCE NO	. (FROM APPL	JCATION)	FLOW DIAGRAM PO WFS-03	INT NUMBER	'''	Mrc abQuen	CE NO.
WFS-03			W L2-02		APC		
3. LOCATION:	LATITUDE		LONGITUDE	UTM VERTICAL	······	UTM HORIZO	NTAL
						2020205 65	
→ 4. BRIEF EMISSION POIN	35.835383	FANT (1 700) 1 (78 Y	-84.321674	199951.19		3970785.65 DISTANCE TO	TAREARESE
4. BRIEF EMISSION PUIN	I DESCRIPT	ION (ATTACH	A SKETCH IF APPROPT	MATE).		PROPERTY L	
Feedstock received as baled swi	tcherass, or wo	od pieces will be	e processed for size reduc	tion in a tub grinder. T	he tub grinder		` '
will discharge the material to th	e temporary sto	rage area. Dust	emissions from this proce	ess will be controlled wi	ith a bag house.	1000	
						<u> </u>	
COMPLETE LINES 5 AND 6 I	F DIFFERENT	FROM THAT			RCE DESCRIPTIO		
5. NORMAL	HOURS/DA	Y	DAYS/WEEK	WEEK/YEAR		DAYS/YEAR	
OPERATION:	25		1 7	52		365	
>	23		'	,12.		500	
6. PERCENT ANNUAL	DECFEB.		MARCH-MAY	JUNE-AUG.		SEPT -NOV.	
THROUGHPUT:							
	25		25	25		25	
7. STACK OR EMISSION	HEIGHT AB		DIAMETER	TEMPERATURE	% OF TIME	DIRECTION ((UP, DOWN (
POINT DATA:	GRADE (F	Γ)	(FT)	(°F) 700	OVER 125°F	HORIZONTA	
→	9		0.67	700	100	up	,
DATA AT EXIT	FLOW (ACT	UAL	VELOCITY	MOISTURE	L	MOISTURE	
CONDITIONS:	FT ³ /MIN.)		(FT/SEC)	(GRAINS/FT ³)		(PERCENT)	
	3125		148	1		Арргох 35%	
				140401111111111111111111111111111111111		LACIESTI INC	
DATA AT STANDARD	FLOW (DRY	STD.	VELOCITY	MOISTURE (GRAINS/FT³)		MOISTURE (PERCENT)	
CONDITIONS:	FT ³ /MIN) 2031		(FT/SEC) 96	(OKMINO/FT)			
}	2031] "				
8. AIR CONTAMINANTS	 	AC	TUAL EMISSIONS				
	EMISSIONS	(LBS/HR)	CONCENTRATION	AVG. EMISSIONS	EMISSIONS*	CONTROL	CONTROL
	AVERAGE	MAXIMUM		(TONS/YR)	EST.	DEVICES*	EFFICIENCY9
PARTICULATES			**	0.04	اً ا	000	1
	0.06	0.06	***	0.26	5	999	<u> </u>
SULFUR DIOXIDE	Nan	Neg.	4.0.4	Neg.	5	n/a	}
CARBON	Neg.	INCE.	PPM	1406.		1174	
MONOXIDE	0.30	0.30	11177	1.31	5	999	
ORGANIC			PPM			i	
COMPOUNDS	0.09	0.09		0.39	5	999	
NITROGEN		2.5	PPM	10.05	•	999	
OXIDES	2.5	2.5		10.95	5	333	
FLUORIDES						-	
	1	4	+			1	1
OTHER(SPECIFY)			1				
OTHER(SPECIFY) methane	0.565	0.565		2.47	5	999	

9.	CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:
	OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) ()
10.	COMMENTS

The control device will likely be some type of catalytic device. Selection will be based on measured emissions and control required to meet regulatory limits.

1	I. SIGNATURE		DATE
	10/X.	Now the	2012-07-19
1	7	7/	

- REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS —
 GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.

 *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT.

STATE OF TENNESSEE
DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

9th Floor, L & C Annex
TN. DAN Church Street
AIR POLLUTI Alepione (HIN) 532-0554
FAX: (615) 532-0614

2012 JUL 23 PM 2: 16

EMISSION POINT DESCRIPTION

1. ORGANIZATION NAME	•				1 ///	APC COMPA	Y POINT NO.
					500		
Wampler's Farm Sausage			T 57 (30 (15 (50 (15 (15 (15 (15 (15 (15	(> 2 () > 17 78 87 7 () ()	FOR	APC SEQUEN	CC NO
2. EMISSION SOURCE NO. (FROM APPLICATION) WFS-04			FLOW DIAGRAM PO WFS-04	INT NUMBER	APC	APC SEQUEN	CE NO,
3. LOCATION:	LATITUDE		LONGITUDE	UTM VERTICAL		UTM HORIZO	NTAL
~~ >	35.835383		-84,321674	199951.19		3970785.65	
4. BRIEF EMISSION POIN		ON (ATTACH	A SKETCH IF APPROPE	RIATE):		DISTANCE TO	
Feedstock received as baled swi will discharge the material to th	e temporary sto	rage area. Dust	emissions from this proce	ess will be controlled w	ith a bag house.	PROPERTY L	INE (FT)
COMPLETE LINES 5 AND 6 I	F DIFFERENT	FROM THAT		FUEL BURNING SOU	RCE DESCRIPTION		
5. NORMAL	HOURS/DA	1	DAYS/WEEK	WEEK/YEAR		DAYS/YEAR	
OPERATION:	25		7	52		365	
6. PERCENT ANNUAL	DECFEB.		MARCH-MAY	JUNE-AUG.		SEPTNOV.	
THROUGHPUT:	25		25	25		25	
7. STACK OR EMISSION	HEIGHT AB	OVE	DIAMETER	TEMPERATURE	% OF TIME	DIRECTION (OF EXIT
POINT DATA:	GRADE (F		(FT)	(°F) 700		(UP, DOWN O	
->	9		0.67	700	100	ир	
DATA AT EXIT CONDITIONS: →	FLOW (ACTUAL FT ³ /MIN.) 3125		VELOCITY (FT/SEC) 148	MOISTURE (GRAINS/FT³)		MOISTURE (PERCENT) Approx 35%	
DATA AT STANDARD CONDITIONS:	FLOW (DRY FT³/MIN) 2031	STD.	VELOCITY (FT/SEC) 96	MOISTURE (GRAINS/FT³)		MOISTURE (PERCENT)	
8. AIR CONTAMINANTS		AC	TUAL EMISSIONS	1.,			
	EMISSIONS AVERAGE	(LBS/HR) MAXIMUM	CONCENTRATION	AVG. EMISSIONS (TONS/YR)	EMISSIONS* EST.	CONTROL DEVICES*	CONTROL EFFICIENCY%
PARTICULATES	0.06	0.06	±±	0.26	5	999	
SULFUR DIOXIDE	Neg.	Neg.	***	Neg.	5	n/a	
CARBON MONOXIDE	0.30	0.30	PPM	1,31	5	999	
ORGANIC COMPOUNDS	0.09	0.09	PPM	0.39	5	999	
NITROGEN OXIDES	2.5	2.5	PPM	10.95	5	999	
FLUORIDES							
OTHER(SPECIFY) methane	0.565	0.565		2.47	5	999	

9.	CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:	
	OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) ()

The control device will likely be some type of catalytic device. Selection will be based on measured emissions and control required to meet regulatory limits.

2012-07-19

- REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES. EXIT GAS PARTICULATE CONCENTRATION UNITS; PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS —
- GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.

 *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 AR POLLUTION CONTROL

EMISSION POINT DESCRIPTION

2012 JUL 23 PM 2: 16 APC 22

PLEASE TYPE OR PRINT ATTACH TO THE PERMI			ATE FOR EACH STA	ACK OR EMISSION	POINT.		
I. ORGANIZATION NAME		10142			1//	APC COMPAN	IY POINT NO.
Wampler's Farm Sausage					HEIGH	VED	
2. EMISSION SOURCE NO WFS-05	2. EMISSION SOURCE NO. (FROM APPLICATION) WFS-05			FLOW DIAGRAM POINT NUMBER / / / WFS-05 APC			CE NO.
3. LOCATION: LATITUDE			LONGITUDE	UTM VERTICAL		UTM HORIZO	NTAL
·~ >	35,835383		~84.321674	199951.19		3970785.65	
4. BRIEF EMISSION POIN	T DESCRIPT	ON (ATTACH	A SKETCH IF APPROPE	RIATE):		DISTANCE TO PROPERTY L	
Feedstock received as baled swi will discharge the material to th	e temporary sto	rage area. Dust	emissions from this proce	ess will be controlled w	ith a bag house.	1000	
COMPLETE LINES 5 AND 6 I	F DIFFERENT	FROM THAT O	ON THE PROCESS OR I	FUEL BURNING SOU	RCE DESCRIPTI	ON (APC 21)	
5. NORMAL	HOURS/DA	7	DAYS/WEEK	WEEK/YEAR		DAYS/YEAR	
OPERATION: →	25		7	52		365	
6. PERCENT ANNUAL	DECFEB.		MARCH-MAY	JUNE-AUG.		SEPT,-NOV.	
THROUGHPUT:	25		25	25		25	
# CPACK OD PATECTON	HEIGHT AB	(33712	DIAMETER	TEMPERATURE	% OF TIME	DIRECTION (OF EXIT
7. STACK OR EMISSION HEIGHT A POINT DATA: GRADE ((FT)	(°F) OVER 125°F		(UP, DOWN OR	
		,	1	700		HORIZONTA:	(.)
->			0.67		100	up	
DATA AT EXIT	FLOW (ACTUAL F1 ³ /MIN.) 3125		VELOCITY	MOISTURE (GRAINS/FT³)		MOISTURE (PERCENT) Approx 35%	
CONDITIONS:			(FT/SEC) 148				
→	3123		1				
DATA AT STANDARD	FLOW (DRY	STD.	VELOCITY	MOISTURE		MOISTURE	
CONDITIONS:	FT ³ /MIN)		(FT/SEC) 96	(GRAINS/FT³)		(PERCENT)	
)	2031		90				
8. AIR CONTAMINANTS		AC	TUAL EMISSIONS	<u> </u>			T
W (III COM HEIMANNI)	EMISSIONS		CONCENTRATION	AVG. EMISSIONS	EMISSIONS*	CONTROL	CONTROL
	AVERAGE	MAXIMUM		(TONS/YR)	EST.	DEVICES*	EFFICIENCY%
PARTICULATES	0.06	0.06	**	0.26	5	999	
SULFUR		.,	***	Non	5	n/a	
DIOXIDE	Neg.	Neg.	PPM	Neg.		11/4	
CARBON MONOXIDE	0.30	0.30	FILM	1.31	5	999	
ORGANIC		2.40	PPM	0.20	5	999	
COMPOUNDS NITROGEN	0.09	0.09	PI'M	0.39		777	<u> </u>
OXIDES	2.5	2.5		10.95	5	999	
FLUORIDES							
OTHER(SPECIFY)							
methane	0.565	0.565		2.47	5	999	1
OTHER(SPECIFY)							

9,	CHECK TYPES OF M	IONITORING AND REC	CORDING INSTRUME	ENTS THAT ARE ATTACHED:	
	OPACITY MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) ()	

The control device will likely be some type of catalytic device. Selection will be based on measured emissions and control required to meet regulatory limits.

H. SIGNATURE 2012-07-19

- REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.
- *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

9th Floor, L & C Annex
401 Church Street
Nashville, TN 37243-1531
Telephone: (615) 532-0554
TN. DNF (615) 532-0614
AIR POLLUTION CONTROL

EMISSION POINT DESCRIPTION

2012 JUL 23 PM 2: 16 APC 22

PLEASE TYPE OR PRINT			ATE FOR EACH STA	CK OR EMISSION	POINT				
ATTACH TO THE PERMIT APPLICATION. 1. ORGANIZATION NAME								APC COMPANY POINT NO.	
Tors:								FIVED	
Wampler's Farm Sausage Company 2. EMISSION SOURCE NO. (FROM APPLICATION) FLOW DIAGRAM POINT NUMBER ///								APC SEQUENCE NO.	
WFS-06			WFS-02			APC			
3. LOCATION:	LOCATION: LATITUDE		LONGITUDE	UTM VERTICAL		UTM HORIZONTAL			
→ 35.835383		-84,321674	199951.19		3970785.65				
		A SKETCH IF APPROPRIATE):		DISTANCE TO NEAREST PROPERTY LINE (FT)					
Feedstock received as baled switchgrass, or wood pieces will be processed for size reduction in a tub grinder. The tub grinder will discharge the material to the temporary storage area. Dust emissions from this process will be controlled with a bag house.								1000	
COMPLETE LINES 5 AND 6 F	F DIFFERENT	FROM THAT (ON THE PROCESS OR E	UEL BURNING SOU	RCE DE	SCRIPTIC	N (APC 21)		
5. NORMAL	OMPLETE LINES 5 AND 6 IF DIFFERENT FROM THAT C NORMAL HOURS/DAY		DAYS/WEEK	WEEK/YEAR		DAYS/YEAR			
OPERATION:	25		7	52			365		
6. PERCENT ANNUAL THROUGHPUT:	DECFEB.		MARCH-MAY	JUNE-AUG.			SEPT,-NOV.		
	25		25	25		25			
7. STACK OR EMISSION POINT DATA:	HEIGHT ABO GRADE (FI		DIAMETER (FT)	TEMPERATURE (°F)	% OF OVER		DIRECTION ((UP, DOWN (
IOMII DAIA.		, ,			0		HORIZONTA horizontal	L)	
DATA AT EXIT	FLOW (ACTUAL		0.5 VELOCITY	ambient 0 MOISTURE		MOISTURE			
CONDITIONS:	FT³/MIN.)		(FT/SEC)	(GRAINS/FT³)		(PERCENT)			
\rightarrow	2500		210			Approx 15%			
DATA AT STANDARD	DATA AT STANDARD FLOW (DRY STD.		VELOCITY	MOISTURE		MOISTURE (PERCENT)			
CONDITIONS;	FT ³ /MIN) 2125		(FT/SEC) 180	(GRAINS/FT³)		(FERCENT)			
→			TUAL EMISSIONS						
8. AIR CONTAMINANTS	EMISSIONS		CONCENTRATION	TON AVG. EMISSIONS EMISSIONS*		CONTROL	CONTROL.		
	AVERAGE	MAXIMUM	**	(TONS/YR)	EST.		DEVICES*	EFFICIENCY%	
PARTICULATES	2 25	2.25	**	9.86	5		017	95%	
SULFUR DIOXIDE			***						
CARBON			PPM				-		
MONOXIDE ORGANIC			PPM						
COMPOUNDS					<u> </u>				
NITROGEN OXIDES			PPM						
FLUORIDES		-				******			
OTHER(SPECIFY)					1				
OTHER(SPECIFY)									

9.	CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:	
	OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) ()	

Final selection of a baghouse may result in some minor changes.

	\sim		
11.		. 1 11	DATE
	AUZ	Ways In /1	2012-07-19
		1 0 / /	

- REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS — LBS/MILLION BTU HEAT INPUT.

 *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS — PPM BY VOLUME, DRY BASES; BOILERS — LBS/MILLION BTU HEAT